
Chapter

21 Multidimensional Searching

A point quadtree, 2005. Credit: David Eppstein. Public domain image.

Contents

21.1 Range Trees . 605

21.2 Priority Search Trees . 609

21.3 Quadtrees and k-d Trees 614

21.4 Exercises . 618

604 Chapter 21. Multidimensional Searching

We live in a multidimensional geometric world. Physical space itself is three-

dimensional, for we can use three coordinates, x, y, and z, to describe points in

space. Completely describing the orientation of the tip of a robot arm actually re-

quires six dimensions, for we use three dimensions to describe the position of the

tip in space, plus three more dimensions to describe the angles the tip is in (which

are typically called pitch, roll, and yaw). Describing the state of an airplane in flight

takes at least nine dimensions, for we need six to describe its orientation in the same

manner as for the tip of a robot arm, and we need three more to describe the plane’s

velocity. In fact, these physical representations are considered “low-dimensional,”

particularly in applications in machine learning or computational biology, where

100- and 1000-dimensional spaces are not unusual. For instance, a vector describ-

ing a collection of genes or movie ratings could easily have dimensionality in this

range. This chapter is therefore directed at multidimensional searching, which

studies data structures for storing and querying multidimensional data sets.

Multi-dimensional data arise in a variety of applications, including statistics

and robotics. The simplest type of multidimensional data are d-dimensional points,

which can be represented by a sequence,

(x0, x1, . . . , xd−1),

of d numeric coordinates. In business applications, a d-dimensional point may rep-

resent the various attributes of a product or an employee in a database. For example,

televisions in an electronics catalog would probably have different attribute values

for price, screen size, weight, height, width, and depth. Multi-dimensional data

can also come from scientific applications, where each point represents attributes

of individual experiments or observations. For example, heavenly objects in an as-

tronomy sky survey would probably have different attribute values for brightness

(or apparent magnitude), diameter, distance, and position in the sky (which is itself

two-dimensional). Thus, these applications can benefit from efficient methods for

storing and searching in multidimensional data sets.

There are actually a great number of different data structures and algorithms

for processing multidimensional data, and it is beyond the scope of this chapter to

discuss all of them. We provide instead an introduction to some of the more inter-

esting ones in this chapter. We begin with a discussion of range trees, which can

store multidimensional points so as to support a special kind of query operation,

called a range-searching query, and we also include an interesting variant of the

range tree called the priority search tree. Finally, we discuss a class of data struc-

tures, called partition trees, which partition space into cells, and focus on variants

known as quadtrees and k-d trees. These data structures are used, for instance, in

computer graphics and computer gaming applications, where we need to find near-

est neighbors to a query point or map out the trajectory of a ray through a virtual

environment.

21.1. Range Trees 605

21.1 Range Trees

A natural query operation to perform on a set of multidimensional points is a range-

search query, which is a request to retrieve all points in a multidimensional collec-

tion whose coordinates fall within given ranges. For example, a consumer wishing

to buy a new television may request, from an electronic store’s catalog, all units

that have a screensize between 24 and 27 inches, and have a price between $200

and $400. Alternately, an astronomer interested in studying asteroids may request

all heavenly objects that are at a distance between 1.5 and 10 astronomical units,

have an apparent magnitude between +1 and +15, and have a diameter between

0.5 and 1, 000 kilometers. The range tree data structure, which we discuss in this

section, can be used to answer such queries.

Two-Dimensional Range-Search Queries

To keep the discussion simple, let us focus on two-dimensional range-searching

queries. Exercise C-21.7 addresses how the corresponding two-dimensional range

tree data structure can be extended to higher dimensions. A two-dimensional dic-

tionary is a data structure for storing key-element items such that the key is a pair

(x, y) of numbers, called the coordinates of the element. A two-dimensional dic-

tionary D supports the following fundamental query operation:

findAllInRange(x1, x2, y1, y2): Return all the elements of D with coordinates (x, y)
such that x1 ≤ x ≤ x2 and y1 ≤ y ≤ y2.

Operation findAllInRange is the reporting version of the range-searching query,

because it asks for all the items satisfying the range constraints. There is also

a counting version of the range query, in which we are simply interested in the

number of items in that range. We present data structures for answering two-

dimensional range queries in the remainder of this section.

Note that a two-dimensional range-search operation is directly analogous to a

one-dimensional range search, which is discussed in Section 3.2. The main ideas

from one-dimensional searching can inform our thoughts about how to answer a

two-dimensional range-search query, but more work is needed. For instance, one

way to answer is a one-dimensional range search is to use a balanced binary tree,

with the keys stored in sorted order. Then we can search for the lower end of a

range, x1, and the upper end of a range, x2, and answer the query by reporting or

counting all the elements in the search tree that are between these two locations

using the in-order ordering. If the points are two-dimensional, though, then this

approach can only be used to report or count points in the vertical strip between the

lines x = x1 and x = x2. Thus, for two-dimensional range searching, something

more is needed.

606 Chapter 21. Multidimensional Searching

21.1.1 Two-Dimensional Range Searching

The two-dimensional range tree is a data structure that can implement a two-

dimensional dictionary. It consists of a primary structure, which is a balanced

binary search tree T , together with a number of auxiliary structures. (See Fig-

ure 21.1.)

v

b

c

d

u

a
e

Figure 21.1: A set of items with two-dimensional keys represented by a two-

dimensional range tree, and a range search on it. The primary structure T is shown.

The nodes of T visited by the search algorithm are drawn with thick lines. The

boundary nodes are white-filled, and the allocation nodes are gray-filled. Point a,

stored at boundary node u, is outside the search range. The gray vertical strips cover

the points stored at the auxiliary structures of the allocation nodes. For example,

the auxiliary structure of node v stores points b, c, d, and e.

Specifically, each internal node in the primary structure T stores a reference

to a related auxiliary structure. The function of the primary structure, T , is to

support searching based on x-coordinates. To also support searching in terms of

the y-coordinates, we use a collection of auxiliary data structures, each of which

is a one-dimensional range tree that uses y-coordinates as its keys. The primary

structure of T is a balanced binary search tree built using the x-coordinates of the

items as the keys. An internal node v of T stores the following data:

• An item, whose coordinates are denoted by x(v) and y(v), and whose ele-

ment is denoted by element(v).
• A one-dimensional range tree T (v) that stores the same set of items as the

subtree rooted at v in T (including v), but using the y-coordinates as keys.

21.1. Range Trees 607

We give the details of answering a two-dimensional range search with a range

tree in Algorithm 21.2 (see also Figure 21.1).

Algorithm 2DTreeRangeSearch(x1, x2, y1, y2, v, t):

Input: Search keys x1, x2, y1, and y2; node v in the primary structure T of a

two-dimensional range tree; type t of node v
Output: The items in the subtree rooted at v whose coordinates are in the x-

range [x1, x2] and in the y-range [y1, y2]

if T.isExternal(v) then

return ∅
if x1 ≤ x(v) ≤ x2 then

if y1 ≤ y(v) ≤ y2 then

M ← {element(v)}
else

M ← ∅
if t = “left” then

L ← 2DTreeRangeSearch(x1, x2, y1, y2, T.leftChild(v), “left”)
R ← 1DTreeRangeSearch(y1, y2, T.rightChild(v))

else if t = “right” then

L ← 1DTreeRangeSearch(y1, y2, T.leftChild(v))
R ← 2DTreeRangeSearch(x1, x2, y1, y2, T.rightChild(v), “right”)

else

// t = “middle”

L ← 2DTreeRangeSearch(x1, x2, y1, y2, T.leftChild(v), “left”)
R ← 2DTreeRangeSearch(x1, x2, y1, y2, T.rightChild(v), “right”)

else

M ← ∅
if x(v) < x1 then

L ← ∅
R ← 2DTreeRangeSearch(x1, x2, y1, y2, T.rightChild(v), t)

else

// x(v) > x2

L ← 2DTreeRangeSearch(x1, x2, y1, y2, T.leftChild(v), t)
R ← ∅

return L ∪ M ∪ R

Algorithm 21.2: A recursive method for performing a two-dimensional

range search in a two-dimensional range tree. The initial method call is

2DTreeRangeSearch(x1, x2, y1, y2, T.root(), “middle”). The algorithm is called

recursively on all the boundary nodes with respect to the x-range [x1, x2]. Param-

eter t indicates whether v is a left, middle, or right boundary node. The method,

1DTreeRangeSearch, is the same as the method, RangeQuery, given in Algo-

rithm 3.11.

608 Chapter 21. Multidimensional Searching

Lemma 21.1: A two-dimensional range tree storing n items uses O(n log n) space
and can be constructed in O(n log n) time.

Proof: The primary structure uses O(n) space. There are n secondary structures.

The size of an auxiliary structure is proportional to the number of items stored in it.

An item stored at node v of the primary structure T is also stored at each auxiliary

structure T (u) such that u is an ancestor of v. Since tree T is balanced, node v has

O(log n) ancestors. Hence, there are O(log n) copies of the item in the auxiliary

structures. Thus, the total space used is O(n log n). The construction algorithm is

left as an exercise (C-21.3).

The algorithm for operation findAllInRange(x1, x2, y1, y2) begins by perform-

ing what is essentially a one-dimensional range search on the primary structure T
for the range [x1, x2]. Namely, we traverse down tree T in search of inside nodes.

We make one important modification, however: when we reach an inside node v, in-

stead of recursively visiting the subtree rooted at v, we perform a one-dimensional

range search for the interval [y1, y2] in the auxiliary structure of v.

We call allocation nodes the inside nodes of T that are children of boundary

nodes. The algorithm visits the boundary nodes and the allocation nodes of T , but

not the other inside nodes. Each boundary node v is classified by the algorithm as

a left node, middle node, or right node. A middle node is in the intersection of the

search paths P1 for x1 and P2 for x2. A left node is in P1 but not in P2. A right

node is in P2 but not in P1. At each allocation node v, the algorithm executes a one-

dimensional range search on the auxiliary structure T (v) for the y-range [y1, y2].

Theorem 21.2: A two-dimensional range tree T for a set of n items with two-
dimensional keys uses O(n log n) space and can be constructed in O(n log n) time.
Using T , a two-dimensional range-search query takes time O(log2 n + s), where s
is the number of elements reported.

Proof: The space requirement and construction time follow from Lemma 21.1.

We now analyze the running time of a range-search query performed with Algo-

rithm 21.2 (2DTreeRangeSearch). We account for the time spent at each bound-

ary node and allocation node of the primary structure T . The algorithm spends a

constant amount of time at each boundary node. Since there are O(log n) boundary

nodes, the overall time spent at the boundary nodes is O(log n). For each alloca-

tion node v, the algorithm spends O(log nv + sv) time doing a one-dimensional

range search in auxiliary structure T (v), where nv is the number of items stored

in T (v) and sv is the number of elements returned by the range search in T (v).
Denoting with A the set of allocation nodes, we have that the total time spent at

the allocation nodes is proportional to
∑

v∈A
(log nv + sv). Since |A| is O(log n),

nv ≤ n and
∑

v∈A
≤ s, we have that the overall time spent at the allocation

nodes is O(log2 n + s). We conclude that a two-dimensional range search takes

O(log2 n + s) time.

21.2. Priority Search Trees 609

21.2 Priority Search Trees

In this section, we present the priority search tree structure, which can answer

three-sided range queries on a set S of items with two-dimensional keys:

findAllInRange(x1, x2, y1): Return all the items of S with coordinates (x, y) such

that x1 ≤ x ≤ x2 and y1 ≤ y.

Geometrically, this query asks us to return all points between two vertical lines

(x = x1 and x = x2) and above a horizontal line (y = y1).

A priority search tree for set S is a binary tree storing the items of S that

behaves like a binary search tree with respect to the x-coordinates, and like a heap

with respect to the y-coordinates. For simplicity, let us assume that all the items

of S have distinct x and y-coordinates. If set S is empty, T consists of a single

external node. Otherwise, let p̄ be the topmost item of S, that is, the item with

maximum y-coordinate. We denote with x̂ the median x-coordinate of the items in

S−{p̄}, and with SL and SR the subsets of S−{p̄} with items having x-coordinate

less than or equal to x̂ and greater than x̂, respectively. We recursively define the

priority search tree T for S as follows:

• The root T stores item p̄ and the median x-coordinate x̂.

• The left subtree of T is a priority search tree for SL.

• The right subtree of T is a priority search tree for SR.

For each internal node v of T , we denote with p̄(v), x̄(v), and ȳ(v) the topmost item

stored at v and its coordinates. Also, we denote with x̂(v) the median x-coordinate

stored at v. An example of a priority search tree is shown in Figure 21.3.

Figure 21.3: A set S of items with two-dimensional keys and a priority search tree T
for S. Each internal node v of T is drawn as a circle around point p̄(v). The median

x-coordinate x̂(v) is represented by a dashed line below node v that separates the

items stored in the left subtree of v from those stored in the right subtree.

610 Chapter 21. Multidimensional Searching

21.2.1 Constructing a Priority Search Tree

The y-coordinates of the items stored at the nodes of a priority search tree T satisfy

the heap-order property (Section 5.3). That is, if u is the parent of v, then ȳ(u) >
ȳ(v). Also, the median x-coordinates stored at the nodes of T define a binary search

tree (Section 3.1.1). These two facts motivate the term “priority search tree.” Let

us therefore explain how to construct a priority search tree from a set S of n two-

dimensional items. We begin by sorting S by increasing x-coordinate, and then call

the recursive method buildPST(S) shown in Algorithm 21.4.

Algorithm buildPST(S):

Input: A sequence S of n two-dimensional items, sorted by x-coordinate

Output: A priority search tree T for S

Create an elementary binary tree T consisting of single external node v
if !S.isEmpty() then

Traverse sequence S to find the item p̄ of S with highest y-coordinate

Remove p̄ from S
p̄(v) ← p̄
p̂ ← S.get(⌈S.size()/2⌉)
x̂(v) ← x(p̂)
Split S into two subsequences, SL and SR, where SL contains the items up

to p̂ (included), and SR contains the remaining items

TL ← buildPST(SL)
TR ← buildPST(SR)
T.expandExternal(v)
Replace the left child of v with TL

Replace the right child of v with TR

return T
Algorithm 21.4: Recursive construction of a priority search tree.

Lemma 21.3: Given a set S of n two-dimensional items, a priority search tree for
S uses O(n) space, has height O(log n), and can be built in O(n log n) time.

Proof: The O(n) space requirement follows from the fact that every internal

node of the priority search tree T stores a distinct item of S. The height of T
follows from the halving of the number of nodes at each level. The preliminary

sorting of the items of S by x-coordinate can be done in O(n log n) time using

an asymptotically optimal sorting algorithm, such as heap sort or merge sort. The

running time T (n) of method buildPST (Algorithm 21.4) is characterized by the

recurrence, T (n) = 2T (n/2) + bn, for some constant b > 0. Therefore, by the

Master Theorem (11.4), T (n) is O(n log n).

21.2. Priority Search Trees 611

21.2.2 Searching in a Priority Search Tree

We now show how to perform a three-sided range query findAllInRange(x1, x2, y1)
on a priority search tree T . We traverse down T in a fashion similar to that of a one-

dimensional range search for the range [x1, x2]. One important difference, however,

is that we only continue searching in the subtree of a node v if y(v) ≥ y1. We

give the details of the algorithm for three-sided range searching in Algorithm 21.5

(PSTSearch) and we illustrate the execution of the algorithm in Figure 21.6.

Algorithm PSTSearch(x1, x2, y1, v):

Input: Three-sided range, defined by x1, x2, and y1, and a node v of a priority

search tree T
Output: The items stored in the subtree rooted at v with coordinates (x, y),

such that x1 ≤ x ≤ x2 and y1 ≤ y

if ȳ(v) < y1 then

return ∅
if x1 ≤ x̄(v) ≤ x2 then

M ← {p̄(v)} // we should output p̄(v)
else

M ← ∅
if x1 ≤ x̂(v) then

L ← PSTSearch(x1, x2, y1, T.leftChild(v))
else

L ← ∅
if x̂(v) ≤ x2 then

R ← PSTSearch(x1, x2, y1, T.rightChild(v))
else

R ← ∅
return L ∪ M ∪ R

Algorithm 21.5: Three-sided range searching in a priority search tree T . The algo-

rithm is initially called with PSTSearch(x1, x2, y1, T.root()).

Note that we have defined three-sided ranges to have a left, right, and bottom

side, and to be unbounded at the top. This restriction was made without loss of gen-

erality, however, for we could have defined our three-sided range queries using any

three sides of a rectangle. The priority search tree from such an alternate definition

is similar to the one defined above, but “turned on its side.”

Let us analyze the running time of method PSTSearch for answering a three-

sided range-search query on a priority search tree T storing a set of n items with

two-dimensional keys. We denote with s the number of items reported. Since we

spend O(1) time for each node we visit, the running time of method PSTSearch

612 Chapter 21. Multidimensional Searching

v

x
1

x
2

y
1

u

Figure 21.6: Three-sided range-searching in a priority search tree. The nodes visited

are drawn with thick lines. The nodes storing reported items are gray-filled.

is proportional to the number of visited nodes.

Each node v visited by method PSTSearch is classified as follows:

• Node v is a boundary node if it is on the search path for x1 or x2 when

viewing T as a binary search tree on the median x-coordinate stored at its

nodes. The item stored at an internal boundary node may be inside or outside

the three-sided range. By Lemma 21.3, the height of T is O(log n). Thus,

there are O(log n) boundary nodes.

• Node v is an inside node if it is internal, it is not a boundary node, and

ȳ(v) ≥ y1. The item stored at an internal node is inside the three-sided

range. The number of inside nodes is no more than the number s of items

reported.

• Node v is a terminal node if it is not a boundary node and, if internal, ȳ(v) <
y1. The item stored at an internal terminal node is outside the three-sided

range. Each terminal node is the child of a boundary node or an inside node.

Thus, the number of terminal nodes is at most twice the number of boundary

nodes plus inside nodes. Thus, there are O(log n + s) terminal nodes.

Theorem 21.4: A priority search tree T storing n items with two-dimensional
keys uses O(n) space and can be constructed in O(n log n) time, to answer three-
sided range queries in O(log n + s) time, where s is the number of items reported.

Of course, three-sided range queries are not as constrained as four-sided range

queries, which can be answered in O(log2 n + k) time using the range tree data

structure discussed above. Still, priority search trees can be used to speed up

the running time of answering standard four-sided, two-dimensional range queries.

The resulting data structure, which is known as the priority range tree, uses priority

search trees as auxiliary structures in a way that achieves the same space bound as

traditional range trees. We discuss this data structure next.

21.2. Priority Search Trees 613

21.2.3 Priority Range Trees

Let T be a balanced binary search tree storing n items with two-dimensional keys,

ordered according to their x-coordinates. We show how to augment T with prior-

ity search trees as auxiliary structures to answer (four-sided) range queries. The

resulting data structure is called a priority range tree.

To convert T into a priority range tree, we visit each internal node v of T other

than the root and construct, as an auxiliary structure, a priority search tree T (v)
for the items stored in the subtree of T rooted at v. If v is a left child, T (v) an-

swers range queries for three-side ranges unbounded on the right. If v is a right

child, T (v) answers range queries for three-side ranges unbounded on the left. By

Lemmas 21.1 and 21.3, a priority range tree uses O(n log n) space and can be con-

structed in O(n log n) time. The method for performing a two-dimensional range

query in a priority range tree is given in Algorithm 21.7 (PSTRangeSearch).

Algorithm PSTRangeSearch(x1, x2, y1, y2, v):

Input: Search keys x1, x2, y1, and y2; node v in the primary structure T of a

priority range tree

Output: The items in the subtree rooted at v whose coordinates are in the x-

range [x1, x2] and in the y-range [y1, y2]

if T.isExternal(v) then

return ∅
if x1 ≤ x(v) ≤ x2 then

if y1 ≤ y(v) ≤ y2 then

M ← {element(v)}
else

M ← ∅
L ← PSTSearch(x1, y1, y2, T (leftChild(v)).root())
R ← PSTSearch(x2, y1, y2, T (rightChild(v)).root())
return L ∪ M ∪ R

else if x(v) < x1 then

return PSTRangeSearch(x1, x2, y1, y2, T.rightChild(v))
else

// x2 < x(v)
return PSTRangeSearch(x1, x2, y1, y2, T.leftChild(v))

Algorithm 21.7: Range searching in a priority range tree T . The algorithm is ini-

tially called with PSTRangeSearch(x1, x2, y1, y2, T.root()).

Theorem 21.5: A priority range tree T for a set of n items with two-dimensional
keys uses O(n log n) space and can be constructed in O(n log n) time. Using T , a
two-dimensional range-search query takes time O(log n+s), where s is the number
of elements reported.

614 Chapter 21. Multidimensional Searching

21.3 Quadtrees and k-d Trees

Multi-dimensional data sets often come from large applications; hence, we often

desire linear-space structures for storing them. A general framework for designing

such linear-space structures for d-dimensional data, where the dimensionality d is

assumed to be a fixed constant, is based on an approach called the partition tree.

A partition tree is a rooted tree T that has at most n external nodes, where

n is the number of d-dimensional points in our given set S. Each external node

of a partition tree T stores a different small subset from S. Each internal node

v in a partition tree T corresponds to a region of d-dimensional space, which is

then divided into some number c of different cells or regions associated with v’s

children. For each region R associated with a child u of v, we require that all the

points in u’s subtree fall inside the region R. Ideally, the c different cells for v’s

children should easily be distinguished using a constant number of operations.

21.3.1 Quadtrees

The first partition tree data structure we discuss is the quadtree. The main ap-

plication for quadtrees is for sets of points that come from images, where x- and

y-coordinates are integers, because the data points come from image pixels. In

addition, they exhibit their best properties if the distributions of points is fairly

nonuniform, with some areas being mostly empty and others being dense.

Suppose we are given a set S of n points in the plane. In addition, let R denote a

square region that contains all the points of S (for example, R could be a bounding

box of a 2048 × 2048 image that produced the set S). The quadtree data structure

is a partition tree T such that the root r of T is associated with the region R. To

get to the next level in T , we subdivide R into four equal-sized squares R1, R2,

R3, and R4, and we associate each square Ri with a potential child of the root r.

Specifically, we create a child vi of r, if the square Ri contains a point in S. If a

square Ri contains no points of S, then we create no child of r for it. This process

of refining R into the squares R1, R2, R3, and R4 is called a split.

The quadtree T is defined by recursively performing a split at each child v of r
if necessary. That is, each child v of r has a square region Ri associated with it, and

if the region Ri for v contains more than one point of S, then we perform a split at

v, subdividing Ri into four equal-sized squares and repeating the above subdivision

process at v. We continue in this manner, splitting squares that contain more than

one point into four subsquares, and recursing on the nonempty subsquares, until

we have separated all the points of S into individual squares. We then store each

point p in S at the external node of T that corresponds to the smallest square in the

subdivision process that contains p. We store at each internal node, v, a concise

representation of the split that we performed for v.

21.3. Quadtrees and k-d Trees 615

1 2 3

4

a

b

c

d

e

f

g

h

ij

k

l

m

1

42

2

1 2 3

4

1 2 3 4 2
ab cd e

f g hi jk lm

Figure 21.8: A quadtree. We illustrate an example point set and its corresponding

quadtree data structure.

We illustrate an example point set and an associated quadtree in Figure 21.8.

Note, however, that, contrary to the illustration, there is potentially no upper bound

on the depth of a quadtree, as we have previously defined. For example, our point

set S could contain two points that are very close to one another, and it may take a

long sequence of splits before we separate these two points. Thus, it is customary

for quadtree designers to specify some upper bound D on the depth of T . Given a

set S of n points in the plane, we can construct a quadtree T for S so as to spend

O(n) time building each level of T . Thus, in the worst case, constructing such a

depth-bounded quadtree takes O(Dn) time.

Answering Range Queries with a Quadtree

One of the queries that quadtrees are often used to answer is range searching. Sup-

pose that we are given a rectangle A aligned with the coordinate axes, and are asked

to use a quadtree T to return all the points in S that are contained in A. The method

for answering this query is quite simple. We start with the root r of T , and we

compare the region R for r to A. If A and R do not intersect at all, then we are

done—there are no points in the subtree rooted at r that fall inside A. Alterna-

tively, if A completely contains R, then we simply enumerate all the external-node

descendants of r. These are two simple cases. If instead R and A intersect, but

A does not completely contain R, then we recursively perform this search on each

child v of r.

In performing such a range-searching query, we can traverse the entire tree

T and not produce any output in the worst case. Thus, the worst-case running

time for performing a range query in a depth D quadtree, with n external nodes is

O(Dn). From a worst-case point of view, answering a range-searching query with a

quadtree is actually worse than a brute-force search through the set S, which would

take O(n) time to answer a two-dimensional range query. In practice, however, the

quadtree typically allows for range-searching queries to be processed faster than

this.

616 Chapter 21. Multidimensional Searching

21.3.2 k-d Trees

There is a drawback to quadtrees, which is that they do not generalize well to higher

dimensions. In particular, each node in a four-dimensional analogue of a quadtree

can have as many as 16 children. Each internal node in a d-dimensional quadtree

can have as many as 2d children. To overcome the out-degree drawback for storing

data from dimensions higher than three, data structure designers often consider

alternative partition tree structures that are binary.

Another kind of partition data structure is the k-d tree, which is similar to

quadtree structure, but is binary. The k-d tree data structure is actually a family

of partition tree data structures, all of which are binary partition trees for storing

multidimensional data. Like the quadtree data structure, each node v in a k-d tree is

associated with a rectangular region R, although in the case of k-d trees this region

is not necessarily square. The difference is that when it comes time to perform a

split operation for a node v in a k-d tree, it is done with a single line that is perpen-

dicular to one of the coordinate axes. For three- or higher-dimensional data sets,

this “line” is an axis-aligned hyperplane. Thus, no matter the dimensionality, a k-d

tree is a binary tree, for we resolve a split by associating the part of v’s region R
to the “left” of the splitting line with v’s left child, and associating the part of v’s

region R to the “right” of the splitting line with v’s right child. As with the quadtree

structure, we stop performing splits if the number of points in a region falls below

some fixed constant threshold. (See Figure 21.9.)

a

b

c

d

e

f

g
h

ij
k

l

m

a b dce f hg ikj l m

n o

p

onp

Figure 21.9: An example k-d tree.

There are two fundamentally different kinds of k-d trees, region-based k-d

trees and point-based k-d trees. Region-based k-d trees are essentially binary ver-

sions of quadtrees. Each time a rectangular region R needs to be split in a region-

based k-d tree, the region R is divided exactly in half by a line perpendicular to

the longest side of R. If there is more than one longest side of R, then they are

split in a “round-robin” fashion. On the other hand, point-based k-d trees, perform

splits based on the distribution of points inside a rectangular region. The k-d tree

of Figure 21.9 is point-based.

21.3. Quadtrees and k-d Trees 617

The method for splitting a rectangle R containing a subset S′ ⊆ S in a point-

based k-d tree involves two steps. In the first step, we determine the dimension i
that has the largest variation in dimension i from among those points in S′. This

can be done, for example, by finding, for each dimension j, the points in S′ with

minimum and maximum dimension j values, and taking i to be the dimension with

the largest gap between these two values. In the second step, we determine the

median dimension i value from among all those points in S′, and we split R with

a line going through this median perpendicular to the dimension i axis. Thus, the

split for R divides the set of points in S′ in half, but may not divide the region

R itself very evenly. Using a linear-time median-finding method (Section 9.2),

this splitting step can be performed in O(k|S′|) time. Therefore, the running time

for building a k-d tree for a set of n points can be characterized by the following

recurrence equation: T (n) = 2T (n/2) + kn, which is O(kn log n). Moreover,

since we divide the size of the set of points associated with a node in two with each

split, the height of T is ⌈log n⌉. Figure 21.9 illustrates a point-based k-d tree built

using this algorithm.

The advantage of point-based k-d trees is that they are guaranteed to have nice

depth and construction times. The drawback of point-based schemes is that they

may give rise to “long-and-skinny” rectangular regions, which are usually consid-

ered bad for most k-d tree query methods.

Using k-d Trees for Nearest Neighbor Searching

Let us discuss how k-d trees can be used to do nearest-neighbor searching, where

we are given a query point p and asked to find the point in S that is closest to

p. A good way to use a k-d tree T to answer such a query is as follows. We

first search down the tree T to locate the external node v with smallest rectangular

region R that contains p. Any points of S that fall in R or in the region associated

with v’s sibling are then compared to find a current closest neighbor, q. We can

then define a sphere centered at p and containing q as a current nearest-neighbor

sphere, s. Given this sphere, we then perform a traversal of T (with a bottom-up

traversal being preferred) to find any regions associated with external nodes of T
that intersect s. If during this traversal we find a point closer than q, then we update

the reference q to refer to this new point and we update the sphere s to contain this

new point. We do not visit any nodes that have regions not intersecting s. When

we have exhausted all possible alternatives, we output the current point q as the

nearest neighbor of p. In the worst case, this method may take O(n) time, but there

are many different analytic and experimental analyses that suggest that the average

running time is more like O(log n), using some reasonable assumptions about the

distribution of points in S. In addition, there are a number of useful heuristics for

speeding up this search in practice, with one of the best being the priority searching

strategy, which says that we should explore subtrees of T in order of the distance

of their associated regions to p.

618 Chapter 21. Multidimensional Searching

21.4 Exercises

Reinforcement

R-21.1 What would be the worst-case space usage of a range tree, if the primary structure
were not required to have O(log n) height?

R-21.2 Given a binary search tree, T , built on the x-coordinates of a set of n objects,
describe an O(n)-time method for computing minx(v) and maxx(v) for every
node, v, in T .

R-21.3 Show that the high y values in a priority search tree satisfy the heap-order prop-
erty.

R-21.4 Argue why the algorithm for answering three-sided range-searching queries with
a priority search tree is correct.

R-21.5 What is the worst-case depth of a k-d tree defined on n points in the plane? What
about in higher dimensions?

R-21.6 Suppose a set S contains n two-dimensional points whose coordinates are all
integers in the range [0, N]. What is the worst-case depth of a quadtree defined
on S?

R-21.7 Draw a quadtree for the following set of points, assuming a 16 × 16 bounding
box:

{(1, 2), (4, 10), (14, 3), (6, 6), (3, 15), (2, 2), (3, 12), (9, 4), (12, 14)}.

R-21.8 Construct a k-d tree for the point set of Exercise R-21.7.

R-21.9 Construct a priority search tree for the point set of Exercise R-21.7.

Creativity

C-21.1 The minx(v) and maxx(v) labels used in the two-dimensional range tree are not
strictly needed. Describe an algorithm for performing a two-dimensional range-
searching query in a two-dimensional range tree where each internal node of the
primary structure only stores a key(v) label (which is the x-coordinate of its
element). What is the running time of your method?

C-21.2 Let D be an ordered dictionary with n items implemented with a balanced search
tree. Show how to implement the following method for D in time O(log n):

countAllInRange(k1, k2): Compute and return the number of items in D with
key k such that k1 ≤ k ≤ k2.

Note that this method returns a single integer.

21.4. Exercises 619

C-21.3 Give a pseudocode description of an algorithm for constructing a range tree from
a set of n points in the plane in O(n log n) time.

C-21.4 Describe an efficient data structure for storing a set S of n items with ordered
keys, so as to support a rankRange(a, b) method, which enumerates all the items
with keys whose rank in S is in the range [a, b], where a and b are integers in
the interval [0, n − 1]. Describe methods for object insertions and deletion, and
characterize the running times for these and the rankRange method.

C-21.5 Design a static data structure (which does not support insertions and deletions)
that stores a two-dimensional set S of n points and can answer, in O(log2 n)
time, queries of the form countAllInRange(a, b, c, d), which return the number
of points in S with x-coordinates in the range [a, b] and y-coordinates in the range
[c, d]. What is the space used by this structure?

C-21.6 Design a data structure for answering countAllInRange queries (as defined in
the previous exercise) in O(log n) time.

Hint: Think of storing auxiliary structures at each node that are “linked” to the
structures at neighboring nodes.

C-21.7 Show how to extend the two-dimensional range tree so as to answer d-dimensional
range-searching queries in O(logd n) time for a set of d-dimensional points,
where d ≥ 2 is a constant.

Hint: Design a recursive data structure that builds a d-dimensional structure us-
ing (d − 1)-dimensional structures.

C-21.8 Suppose we are given a range-searching data structure D that can answer range-
searching queries for a set of n points in d-dimensional space for any fixed di-
mension d (like 8, 10, or 20) in time that is O(logd n+k), where k is the number
of answers. Show how to use D to answer the following queries for a set S of n
rectangles in the plane:

• findAllContaining(x, y): Return an enumeration of all rectangles in S that
contain the point (x, y).

• findAllIntersecting(a, b, c, d): Return an enumeration of all rectangles that
intersect the rectangle with x-range [a, b] and y-range [c, d].

What is the running time needed to answer each of these queries?

C-21.9 Let S be a set of n intervals of the form [a, b], where a < b. Design an effi-
cient data structure that can answer, in O(log n + k) time, queries of the form
contains(x), which asks for an enumeration of all intervals in S that contain x,
where k is the number of such intervals. What is the space usage of your data
structure?

C-21.10 Describe an efficient method for inserting an object into a (balanced) priority
search tree. What is the running time of this method?

620 Chapter 21. Multidimensional Searching

Applications

A-21.1 Quadtrees are often used for geometric environments defined by images, so the
points involved can be normalized to be represented as pairs of fixed-precision
binary numbers in the interval [0, 1]. Such environments also allow for quadtrees
to be representable using one-dimensional search structures, as is explored in this
exercise. So let (x, y) be such a point, with

x = 0.x1x2 . . . xk and y = 0.y1y2 . . . yk,

in binary. Define interleave(x, y) to be the binary number, z, formed by inter-
leaving of the binary numbers x and y, so

z = 0.x1y1x2y2 . . . xkyk,

in binary. Assume we have a set, S, of n such points in the plane and we have
constructed a quadtree, T , for this set of points. Let Z be an array that contains
the points of S in lexicographical order by the results of calling interleave on
each point. Show that for any node, v, in T , the descendants of v are stored in
a contiguous subarray of Z and there is no point in this subarray that is not a
descendant of v in T .

A-21.2 In some computer graphics and computer gaming applications, in order to save
space, we might like to store a set of two-dimensional points in a single data
structure that can be used for both nearest-neighbor queries and range searching.
We have already discussed above how a k-d tree can be used to answer nearest-
neighbor queries with good expected-time behavior. Show that a (round-robin)
k-d tree defined on n two-dimensional points can also be used to answer range-
search queries in O(

√
n + s) time, where s is the number of points output by the

query.

A-21.3 In some applications, such as in computer vision, an input set of two-dimensional
points can be assumed to be given as pairs of integers, rather than arbitrary real
numbers. Suppose, then, that you are given a set of n two-dimensional points
such that each coordinate is in the range [0, 4n]. Show that you can construct a
priority search tree for this set of points in O(n) time.

A-21.4 In applications involving the use of quadtrees in memory-constrained devices,
such as smartphones, we often want to optimize the data structure to make it
more space efficient. One obvious improvement is to take a standard quadtree,
T , and replace each chain of nodes having only one child with a single edge. This
gives us a data structure known as the compressed quadtree. Describe an efficient
method for constructing a compressed quadtree for a set of n two-dimensional
points. What is the time and space complexity for your algorithm?

A-21.5 A higher-dimensional version of a quadtree is known as an octree, since, in three
dimensions it divides each cube into 8 subcubes and recursively constructs an
octree for each nonempty subcube as a child. Suppose we are given such a three-
dimensional structure, but we are only interested in two of the three dimensions,
since we can only display two-dimensional images on a computer screen. De-
scribe an efficient method for converting an octree into a quadtree defined on two
of the dimensions used to construct the octree.

21.4. Exercises 621

A-21.6 When the Sload Digital Sky Survey decided to create a data structure for stor-
ing the objects identified by their projects, they needed a method for searching
for two-dimensional points that are on a sphere rather than being in a rectangle.
So they started with a sphere, cut it into quarters by two perpendicular great cir-
cles going through the poles and then into eight pieces by one more cut using a
great circle through the equator. This divided the sphere into eight regions that
“almost” equilateral triangles. Viewing each region as a perfect equilateral trian-
gle, describe a recursive way to subdivide each one of these triangles that results
in a set of children that are also equilaterial triangles, in a fashion suggestive
of a quadtree. Describe how your structure could be used to effectively answer
circular range-search queries to find all the points inside a given circle on this
sphere.

A-21.7 The quadtree is often used by people who never worry about its worst-case depth
being high. There is a good reason for this belief, if one can assume some ran-
domness exists for the input set of points. Use a Chernoff bound (Section 19.5)
to show that the height of a quadtree defined on n points in the unit square chosen
uniformly and independently at random is O(log n) with high probability.

Hint: If we divide a square into four equal-sized squares, and assign n points
uniformly and independently at random to the square, consider the probability
that any subsquare has more than n/2 of the points.

A-21.8 In computer graphics and computer gaming environments, a common heuristic is
to approximate a complex two-dimensional object by a smallest enclosing rectan-
gle whose sides are parallel to the coordinate axes, which is known as a bounding

box. Using this technique allows system designers to generalize range searching
over points to more complex objects. So, suppose you are given a collection of n
complex two-dimensional objects, together with a set of their bounding boxes,

S = {R1, R2, . . . , Rn}.

Suppose further that for some reason you have a data structure, D, that can store
n four-dimensional points so as to answer four-dimensional range-search queries
in O(log3 n + s) time, where s is the number of points in the query range. Ex-
plain how you can use D to answer two-dimensional range queries for the rect-
angles in S, given a query rectangle, R, would return every bounding box, Ri,
in S, such that Ri is completely contained inside R. Your query should run in
O(log3 n + s) time, where s is the number of bounding boxes that are output as
being completely inside the query range, R.

A-21.9 Consider the previous exercise, but instead of explaining how to use D to an-
swer box-containment range queries, now explain how to build an efficient data
structure, D, that can store four-dimensional range queries for four-dimensional
points in O(log3 n + s) time, where s is the number of answers. What is the
space complexity of your data structure, D?

622 Chapter 21. Multidimensional Searching

Chapter Notes

Multi-dimensional search trees are discussed in books by Mehlhorn [159], Samet [181,
182], and Wood [217]. Please see these books for an extensive discussion of the history of
multidimensional search trees, including various data structures for solving range queries.
Priority search trees are due to McCreight [149], although Vuillemin [213] introduced this
structure earlier under the name “Cartesian trees.” They are also known as “treaps,” as
described by McCreight [149] and Seidel and Aragon [191]. Edelsbrunner [61] shows how
priority search trees can be used to answer two-dimensional range queries. Arya et al. [15,
16] present the balanced box decomposition tree and show it can be used for approximate
nearest-neighbor and range searching. The reader interested in recent developments for
range-searching data structures is referred to the book chapters by Agarwal [3, 4] or the
survey paper by Matouŝek [147].

